On exact solutions of some important nonlinear conformable time-fractional differential equations
نویسندگان
چکیده
The nonlinear fractional Boussinesq equations are known as the differential equation class that has an important place in mathematical physics. In this study, a method called $$\Big (\frac{G'}{G^2}\Big )$$ -extension which works well and reveals exact solutions is used to examine with conformable time-fractional derivative. This very useful approach extremely utility compared other analytical methods. With proposed method, there three unique types of such hyperbolic, trigonometric rational solutions. can similarly be applied models.
منابع مشابه
Explicit Exact Solutions to Some One Dimensional Conformable Time Fractional Equations
The exact solutions of some conformable time fractional PDEs are presented explicitly. The modified Kudryashov method is applied to construct the solutions to the conformable time fractional Regularized Long WaveBurgers (RLW-Burgers, potential Korteweg-de Vries (KdV) and clannish random walker’s parabolic (CRWP) equations. Initially, the predicted solution in the finite series of a rational for...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Exact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SeMA journal
سال: 2022
ISSN: ['2254-3902', '2281-7875']
DOI: https://doi.org/10.1007/s40324-022-00290-5